Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mycologia ; 116(3): 418-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530332

RESUMO

In 1895 and 2001, rust fungi affecting Licania trees (Chrysobalanchaceae) in Brazil were described as Uredo licaniae by Hennings in the state of Goiás and as Phakopsora tomentosae by Ferreira et al. in the state of Amazonas, respectively. Recently, a Licania rust fungus collected close to the Amazonian type location sharing symptoms with the former two species was subjected to morphological examinations and molecular phylogenetic analyses using 28S nuc rDNA (ITS2-28S) and cytochrome c oxidase subunit III (CO3) gene sequences. Since the original type specimen of Ph. tomentosae is considered lost, we carefully reviewed the type description and questioned the identity of the telium, which justified the description of the fungus as a Phakopsora species. Furthermore, the additional revision of the type material described by Hennings revealed that Ph. tomentosae is a synonym of U. licaniae. Based on the morphological examinations, disease symptoms, and shared hosts, we concluded that the newly collected material is conspecific with U. licaniae. However, the phylogenetic analyses rejected allocation in Phakopsora and instead assigned the Licania rust fungus in a sister relationship with Austropuccinia psidii (Sphaerophragmiaceae), the causal agent of the globally invasive myrtle rust pathogen. We therefore favored a recombination of U. licaniae (syn. Ph. tomentosae) into Austropuccinia and proposed the new name Austropuccina licaniae for the second species now identified for this genus. The fungus shares conspicuous symptoms with A. psidii, causing often severe infections of growing leaves and shoots that lead to leaf necrosis, leaf shedding, and eventually to the dieback of entire shoots. In view of the very similar symptoms of its aggressively invasive sister species, we briefly discuss the current state of knowledge about A. licaniae and the potential risks, and the opportunity of its identification.


Assuntos
Basidiomycota , DNA Fúngico , Filogenia , Doenças das Plantas , Basidiomycota/genética , Basidiomycota/classificação , Basidiomycota/isolamento & purificação , Doenças das Plantas/microbiologia , DNA Fúngico/genética , Brasil , Análise de Sequência de DNA , RNA Ribossômico 28S/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Árvores/microbiologia
2.
Mycologia ; 115(6): 802-812, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37862601

RESUMO

Two Cerrado rust fungi, Phakopsora rossmaniae and Aplopsora hennenii, described in 1993 and 1995 and originally assigned to families Phakopsoraceae and Ochropsoraceae, respectively, were subjected to molecular phylogenetic analyses using fragments of the nuc 28S and 18S rDNA and mitochondrial cytochrome c oxidase subunit 3 (CO3) gene. Although both taxa were morphologically well placed in their original genera, they were shown to belong in a strongly supported new lineage within the Raveneliineae distant from the Phakopsoraceae and Ochropsoraceae. Therefore, we properly treated this lineage as the new genus Cerradopsora now harboring C. rossmaniae (type species) and C. hennenii. However, this novel phakopsoroid genus remains in uncertain familial position without support to be included in any of the families that share space within the Raveneliineae.


Assuntos
Basidiomycota , Humanos , Filogenia , DNA Fúngico/genética , Basidiomycota/genética , DNA Ribossômico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA